top of page

Publications

Weeks O*, Gao X, Basu S, Galdieri J, Chen K, Burns CG*, Burns CE*. Embryonic alcohol exposure in zebrafish predisposes adults to cardiomyopathy and diastolic dysfunction. Cardiovasc Res. 2024. Jun 20: cvae 139. *co-corresponding authors.  PDF

​

Shin M, Yin H-M, Shih Y-H, Nozaki T, Portman D, Toles B, Kolb A, Luk K, Isogai S, Ishida K, Hanasaka T, Parsons MJ, Wolfe SA,  Burns CEBurns CG, Lawson ND.  Generation and application of endogenously floxed alleles for cell-specific knockout in zebrafish. Dev Cell. 2023. 58:2614-2626. PDF

 

Akerberg AA, Trembley M, Butty V, Schwertner A, Zhao L, Beerens M, Liu X, Mahamdeh M, Yuan S, Boyer L, MacRae C, Nguyen C, Pu WT,  Burns CE*Burns CG*.  RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circ Res. 2022. 131:980-1000. 

 * co-corresponding authors. PDF

​

Huang M^, Akerberg AA^, Zhang X, Yoon H, Joshi S, Hallinan C, Nguyen C, Pu WT, Haigis MC, Burns CG*Burns CE*.  Intrinsic myocardial defects underlie an Rbfox deficient zebrafish model of hypoplastic left heart syndrome. Nat Commun 2022. 13: 5877.  ^ co-first authors; * co-corresponding authors. PDF

 

Abrial M^, Basu S^, Huang M, Butty V, Schwertner A, Jeffrey S, Jordan D, Burns CE*, Burns CG*. Latent TGFb binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilation. Disease Models & Mech. 2022. 15(3). ^ co-first authors; * co-corresponding authors PDF

​

Basu S - First Person Interview. Disease Models & Mech. 2022. 15(3). PDF

​

Sharpe M^, González-Rosa JM^, Wranitz F, Jeffrey S, Copenhaver K, Burns CG*, Burns CE*. Ruvbl2 suppresses cardiomyocyte proliferation during zebrafish heart development and regeneration. Front Cell Dev. Biol., 2022, 10:800594. ^ co-first authors; * co-corresponding authors PDF

​

Yin HM, Burns CG*, Burns CE*. Innate Mechanisms of Heart Regeneration. Cold Spring Harb Perspec Biol 2021. a040766. PDF 

 

Burns CG*, Burns CE*. Wnt signaling sets the pace. Developmental Cell 2019. 50(6): 675-676. *co-corresponding authors. PDF

​

Akerberg AA, Burns CE*, Burns CG*, Nguyen C*. Deep learning enables automated volumetric assessments of cardiac function in zebrafish. Disease Models & Mech. 2019. 12(10):  *co-corresponding authors. PDF

​

Akerberg AA - First Person Interview. Disease Models & Mech. 2019. 12(10). PDF 

​

Ben-Yair R, Butty V, Busby M, Qiu Y, Levine SS, Goren A*, Boyer LA*, Burns CG*, Burns CE*. H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development. 2019. 146(19):1-10.  *co-corresponding authors.  PDF

​

Akerberg AA, Burns CE, Burns CG. Exploring the activities of RBPMS proteins in myocardial biology. Pediatric Cardiology 2019. 1-9. PDF

​

Galvez-Santisteban M, Chen D, Zhang R, Serrano R, Nguyen C, Zhao L, Nerb L, MasutaniEM, Vermot J, Burns CG, Burns CE, Del Alamo JC, Chi NC. Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. eLife. 2019. 25(8): 44816. PDF

 

Zhao L, Ben-Yair R, Burns CE*, Burns CG*. Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating

zebrafish heart through Wnt pathway antagonism. Cell Reports. 2019. 26(3): 546-554. *co-corresponding authors PDF

 

Guner-Ataman B, Gonzalez-Rosa JM, Shah HN, Butty VL, Jeffrey S, Abrial M, Boyer LA, Burns CG*, Burns CE*. Failed progenitor specification underlies the cardiopharyngeal phenotypes in a zebrafish model of 22q11 deletion syndrome. Cell Reports. 2018. 24(5): 1342-1354. * co-corresponding authors. PDF

 

Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE*, Burns CG*. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Developmental Cell. 2018. 44(4): 433-446. *co-corresponding authors. PDF

 

Natarajan N, Abbas Y, Bryant DM, Gonzalez-Rosa JM, Sharpe M, Uygur A, Cocco-Delgado LH, Ho, NN, Gerard NP, Gerard CJ, Macrae CA, Burns CE, Burns CG, Whited JL, Lee RT. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation 2018; 137:2152-2165. PDF

 

Paffett-Lugassy N^, Novikov N^, Jeffrey S, Abrial M, Guner-Ataman B, Sakthivel S, Burns CE*, Burns CG*. Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development. 2017. 144: 4616-4624.  ^ co-first authors; * co-corresponding authors. PDF

​

Gonzalez-Rosa JM, Burns CE, Burns CG. Zebrafish heart regeneration: 15 years of discoveries. Regeneration. 2017. 4(3):105-123. PDF

 

Abrial M^, Paffett-Lugassy N^, Jeffrey S, Jordan D, O’Loughlin E, Frederick CJ, Burns CG*, Burns CE*. TGF-b Signaling is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation. Cell Reports. 2017. 20: 973-983. ^ co-first authors; * co-corresponding authors

PDF

 

Manalo T, May A, Quinn J, Lafontant DS, Shifatu O, He W, Gonzalez-Rosa JM, Burns CG, Burns CE, Burns AR, Lafontant PJ. Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio and Zebrafish Hearts. J Histochem Cytochem. 2016. 64(11): 687-714. PDF

​

Han P, Bloomekatz J, Ren J, Zhang R, Grinstein JD, Zhao L,  Burns CG, Burns CE, Anderson RM, Chi NC. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature. 2016; 534:700-704. PDF

 

Jahangiri L, Sharpe M, Novikov N, Gonzalez Rosa JM, Borikova A, Nevis K, Paffett-Lugassy N, Zhao L, Adams M, Guner-Ataman B, Burns CE*, Burns CG*. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development. 2016. 143:113-122. *co-corresponding authors. PDF

​

Mosimann C*, Panakova D*, Lawson K, Davidson AJ, Musso G, Werdich A, DiBiase A, Nevis K, Zhou Y, Burger A, Carr LA, Khaled Sabeh M, Burns CE, Burns CG, MacRae CA, Zon LI. Chamber identity programs drive early functional partitioning of the heart. Nature Communications. 2015. 6:8146. *co-first authors. PDF

​

Mahmoud AI*, O’Meara CC*, Gemberling M, Zhao L, Bryant DM, Zheng R, Gannon JB, Cai L, Choi W, Egnaczyk GF, Burns CG, Burns CE, MacRae CA, Poss KD, Lee RT. Nerves regulate cardiomyocyte proliferation and heart regeneration. Developmental Cell. 2015 34(4):387-99.

*co-first authors. PDF

​

Jang, IH, Lu, Y-F, Zhao, L, Wenzel, PL, Kume, T, Datta, SM, Arora, N, Guiu, J, Lagha, M, Kim, PG, Do, EK, Kim, JH, Schlaeger, TM, Zon, LI, Bigas, A, Burns, CE*, Daley, GQ*. Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood. (2015) 125(9):1418-26. PDF

 

Harrison MR, Bussmann J, Huang Y, Zhao L, Osorio A, Burns CG, Burns CE, Sucov HM, Siekmann AF and Lien CL. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish. Developmental Cell. 2015. 33(4):442-54. PDF

​

Burns CG* and Burns CE*.  A Crowning Achievement for Deciphering Coronary Origins. Science. (2014) 345: 28-29. PDF

​

Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG*, Burns CE*. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA. 2014. 111:1403-8. * co-corresponding authors. PDF

​

Paffett-Lugassy N, Singh R, Nevis KR, Guner-Ataman B, O'Loughlin E, Jahangiri L, Harvey RP, Burns CG*, Burns CE*. Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nat Cell Biol. 2013; 15:1362-9. * co-corresponding authors. PDF

​

Nevis KR, Obregon P, Walsh C, Guner-Ataman B, Burns, CG*, Burns CE*. Tbx1 is required for second heart field proliferation in zebrafish. Developmental Dynamics. 2013; 242:540-9.  * co-corresponding authors. PDF

​

Guner-Ataman B, Paffett-Lugassy N, Adams MA, Nevis KR, Jahangiri L, Obregon P, Kikuchi K, Poss KD, Burns CE*, Burns CG*. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development. 2013; 40:1353-1363. * co-corresponding authors. PDF

​

Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y, Gu A, Mosimann C, Sondalle S, Peterson RE, Heideman W, Burns CE*, Burns CG*. Latent TGFb binding protein 3 identifies a second heart field in zebrafish. Nature. 2011; 474:645-8. *co-corresponding authors. PDF

​

Deacon DC, Nevis KR, Cashman TJ, Zhou Y, Zhao L, Washko D, Guner-Ataman B, Burns CG*, Burns CE*. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development. 2010; 137:1887-96. * co-corresponding authors. PDF

​

bottom of page